## Peter Robinson

I'm an Assistant Professor in the Computer Science Department of the City University of Hong Kong. My research focuses on designing new distributed and parallel algorithms, the distributed processing of big data, achieving fault-tolerance in communication networks against adversarial attacks, and developing robust protocols that work in highly dynamic environments such as peer-to-peer Blockchain networks and mobile ad-hoc networks.

My research has been supported by the General Research Fund (Hong Kong), the Natural Sciences and Engineering Research Council (Canada), IBM Research, and the London Mathematical Society.

## News

- New paper at SODA 2021
- General Chair of ACM PODC 2019
- On program committee of DISC 2021, ICDCS 2021, SIROCCO 2021, PODC 2020

## Tags (Show all)

Asynchrony Big Data ≪ Byzantine Failures Churn Communication Complexity Distributed Agreement Distributed Storage Dynamic Network Fault-Tolerance Gossip Communication Graph Algorithm Haskell Information Complexity Leader Election Machine Learning Mobile Ad-Hoc Network Natural Language Processing P2P Secure Computation in Networks Self-Healing Symmetry Breaking Wireless Networks## Publications

2019

- Network Size Estimation in Small-World Networks under Byzantine Faults.DOI

Soumyottam Chatterjee, Gopal Pandurangan, Peter Robinson. 33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2019).

2015

- Fast Byzantine Leader Election in Dynamic Networks

John Augustine, Gopal Pandurangan, Peter Robinson. 29th International Symposium on Distributed Computing (DISC 2015).

AbstractMotivated by robust, secure, and efficient distributed computation in Peer-to-Peer (P2P) networks, we study fundamental Byzantine problems in dynamic networks where the topology can change from round to round and nodes can also experience heavy churn (i.e., nodes can join and leave the network continuously over time). We assume the full information model where the Byzantine nodes have complete knowledge about the entire state of network at every round (including random choices made by all the nodes), have unbounded computational power and can deviate arbitrarily from the protocol. The churn is controlled by an adversary that has complete knowledge and control of what nodes join and leave and at what time and also may rewire the topology in every round and has unlimited computational power, but is oblivious to the random choices made by the algorithm. Byzantine protocols for fundamental distributed computing problems such as agreement and leader election have been studied extensively for the last three decades in static networks; however, these solutions do not work in dynamic networks which characterize many real-world networks such as P2P networks. Our main contribution is an $O(\log^3 n)$ round algorithm that achieves Byzantine leader election under the presence of up to $O({n}^{1/2 - \epsilon})$ Byzantine nodes (for a small constant $\epsilon > 0$) and a churn of up to $O(\sqrt{n}/\text{poly}\log(n))$ nodes per round (where $n$ is the stable network size). The algorithm elects a leader with probability at least $1-n^{-\Omega(1)}$ and guarantees that it is an honest node with probability at least $1-n^{-\Omega(1)}$; assuming the algorithm succeeds, the leader's identity will be known to a $1-o(1)$ fraction of the honest nodes. Our algorithm is fully-distributed, localized (does not require any global knowledge), lightweight, and is simple to implement. It is also scalable, as it runs in polylogarithmic time and requires nodes to send and receive messages of only polylogarithmic size per round. To the best of our knowledge, our algorithm is the first scalable solution for Byzantine leader election in a dynamic network with a high rate of churn; our protocol can also be used to solve Byzantine agreement in a straightforward way. We also show how to implement an (almost-everywhere) public coin with constant bias in a dynamic network with Byzantine nodes and provide a mechanism for enabling honest nodes to store information reliably in the network, which might be of independent interest. In decentralized and dynamic P2P systems where a substantial part of the network may be controlled by malicious nodes, the presented algorithm and techniques can serve as building blocks for designing robust and secure distributed protocols.

2013

- Fast Byzantine Agreement in Dynamic NetworksPDFDOI

John Augustine, Gopal Pandurangan, Peter Robinson 32nd ACM Symposium on Principles of Distributed Computing (PODC 2013).

AbstractWe study Byzantine agreement in dynamic networks where topology can change from round to round and nodes can also experience heavy churn (i.e., nodes can join and leave the network continuously over time). Our main contributions are randomized distributed algorithms that guarantee almost-everywhere Byzantine agreement with high probability even under a large number of Byzantine nodes and continuous adversarial churn in a number of rounds that is polylogarithmic in $n$ (where $n$ is the stable network size). We show that our algorithms are essentially optimal (up to polylogarithmic factors) with respect to the amount of Byzantine nodes and churn rate that they can tolerate by showing lower bound. In particular, we present the following results: \begin{enumerate} \item An $O(\log^3 n)$ round randomized algorithm that achieves almost-everywhere Byzantine agreement with high probability under a presence of up to $O(\sqrt{n}/\text{polylog}(n))$ Byzantine nodes and up to a churn of $O(\sqrt{n}/\text{polylog}(n))$ nodes per round. We assume that the Byzantine nodes have knowledge about the entire state of network at every round (including random choices made by all the nodes) and can behave arbitrarily. We also assume that an adversary controls the churn --- it has complete knowledge and control of what nodes join and leave and at what time and has unlimited computational power (but is oblivious to the topology changes from round to round). Our algorithm requires only polylogarithmic in $n$ bits to be processed and sent (per round) by each node. \item We also present an $O(\log^3 n)$ round randomized algorithm that has same guarantees as the above algorithm, but works even when the churn and network topology is controlled by an adaptive adversary (that can choose the topology based on the current states of the nodes). However, this algorithm requires up to polynomial in $n$ bits to be processed and sent (per round) by each node. \item We show that the above bounds are essentially the best possible, if one wants fast (i.e., polylogarithmic run time) algorithms, by showing that any (randomized) algorithm to achieve agreement in a dynamic network controlled by an adversary that can churn up to $\Theta(\sqrt{ n \log n})$ nodes per round should take at least a polynomial number of rounds. \end{enumerate} Our algorithms are the first-known, fully-distributed, Byzantine agreement algorithms in highly dynamic networks. We view our results as a step towards understanding the possibilities and limitations of highly dynamic networks that are subject to malicious behavior by a large number of nodes.

2011

- Weak System Models for Fault-Tolerant Distributed Agreement Problems

Peter Robinson. PhD Thesis in Computer Science.

AbstractThis thesis investigates various aspects of weak system models for agreement problems in fault-tolerant distributed computing. In Part~I we provide an introduction to the context of this work, discuss related literature and describe the basic system assumptions. In Part~II of this thesis, we introduce the Asynchronous Bounded-Cycle (ABC) model, which is entirely time-free. In contrast to existing system models, the ABC model does not require explicit time-based synchrony bounds, but rather stipulates a graph-theoretic synchrony condition on the relative lengths of certain causal chains of messages in the space-time graph of a run. We compare the ABC model to other models in literature, in particular to the classic models by Dwork, Lynch, and Stockmeyer. Despite Byzantine failures, we show how to simulate lock-step rounds, and therefore make consensus solvable, and prove the correctness of a clock synchronization algorithm in the ABC model. We then present the technically most involved result of this thesis: We prove that any algorithm working correctly in the partially synchronous $\Theta$-Model by Le Lann and Schmid, also works correctly in the time-free ABC model. In the proof, we use a variant of Farkas' Theorem of Linear Inequalities and develop a non-standard cycle space on directed graphs in order to guarantee the existence of a certain message delay transformation for finite prefixes of runs. This shows that any time-free safety property satisfied by an algorithm in the $\Theta$-Model also holds in the ABC model. By employing methods from point-set topology, we can extend this result to liveness properties. In Part~III, we shift our attention to the borderland between models where consensus is solvable and the purely asynchronous model. To this end, we look at the $k$-set agreement problem where processes need to decide on at most $k$ distinct decision values. We introduce two very weak system models MAnti and MSink and prove that consensus is impossible in these models. Nevertheless, we show that $(n-1)$-set agreement is solvable in MAnti and MSink, by providing algorithms that implement the weakest failure detector $\mathcal{L}$. We also discuss how models MAnti and MSink relate to the $f$-source models by Aguilera et al. for solving consensus. In the subsequent chapter, we present a novel failure detector $\mathcal{L}(k)$ that generalizes $\mathcal{L}$, and analyze an algorithm for solving $k$-set agreement with $\mathcal{L}(k)$, which works even in systems without unique process identifiers. Moreover, We explore the relationship between $\mathcal{L}(k)$ and existing failure detectors for $k$-set agreement. Some aspects of $\mathcal{L}(k)$ relating to anonymous systems are also discussed. Next, we present a generic theorem that can be used to characterize the impossibility of achieving $k$-set agreement in various system models. This enables us to show that $(\Sigma_k,\Omega_k)$ is not sufficient for solving $k$-set agreement. Furthermore, we instantiate our theorem with a partially synchronous system model. Finally, we consider the $k$-set agreement problem in round-based systems. First, we introduce a novel abstraction that encapsulates the perpetual synchrony of a run, the so called stable skeleton graph, which allows us to express the solvability power of a system via graph-theoretic properties. We then present an approximation algorithm where processes output an estimate of their respective component of the stable skeleton graph. We define a class of communication predicates PSources(k) in this framework, and show that PSources(k) tightly captures the amount of synchrony necessary for $k$-set agreement, as $(k-1)$-set agreement is impossible with PSources(k). Based on the stable skeleton approximation, we present an algorithm that solves $k$-set agreement when PSources(k) holds. - The Asynchronous Bounded-Cycle ModelPDFDOI

Peter Robinson and Ulrich Schmid. Theoretical Computer Science 412 (2011) 5580–5601. (TCS).

AbstractThis paper shows how synchrony conditions can be added to the purely asynchronous model in a way that avoids any reference to message delays and computing step times, as well as any global constraints on communication patterns and network topology. Our Asynchronous Bounded-Cycle (ABC) model just bounds the ratio of the number of forward- and backward-oriented messages in certain ''relevant'' cycles in the space-time diagram of an asynchronous execution. We show that clock synchronization and lock-step rounds can easily be implemented and proved correct in the ABC model, even in the presence of Byzantine failures. Furthermore, we prove that any algorithm working correctly in the partially synchronous $\Theta$-Model also works correctly in the ABC model. In our proof, we first apply a novel method for assigning certain message delays to asynchronous executions, which is based on a variant of Farkas' theorem of linear inequalities and a non-standard cycle-space of graphs. Using methods from point-set topology, we then prove that the existence of this delay assignment implies model indistinguishability for time-free safety and liveness properties. Finally, we introduce several weaker variants of the ABC model and relate our model to the existing partially synchronous system models, in particular, the classic models of Dwork, Lynch and Stockmayer. Furthermore, we discuss aspects of the ABC model's applicability in real systems, in particular, in the context of VLSI Systems-on-Chip.

2008

- The Asynchronous Bounded-Cycle ModelDOI

Peter Robinson and Ulrich Schmid. 10th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2008). Best Paper Award.

AbstractThis paper shows how synchrony conditions can be added to the purely asynchronous model in a way that avoids any reference to message delays and computing step times, as well as any global constraints on communication patterns and network topology. Our Asynchronous Bounded-Cycle (ABC) model just bounds the ratio of the number of forward- and backward-oriented messages in certain ''relevant'' cycles in the space-time diagram of an asynchronous execution. We show that clock synchronization and lock-step rounds can easily be implemented and proved correct in the ABC model, even in the presence of Byzantine failures. Furthermore, we prove that any algorithm working correctly in the partially synchronous $\Theta$-Model also works correctly in the ABC model. In our proof, we first apply a novel method for assigning certain message delays to asynchronous executions, which is based on a variant of Farkas' theorem of linear inequalities and a non-standard cycle-space of graphs. Using methods from point-set topology, we then prove that the existence of this delay assignment implies model indistinguishability for time-free safety and liveness properties. Finally, we introduce several weaker variants of the ABC model and relate our model to the existing partially synchronous system models, in particular, the classic models of Dwork, Lynch and Stockmayer. Furthermore, we discuss aspects of the ABC model's applicability in real systems, in particular, in the context of VLSI Systems-on-Chip.

## Code

I'm interested in parallel and distributed programming and related technologies such as software transactional memory and the actor-model. Recently, I have been working on implementing a simulation environment for distributed algorithms in Elixir/Erlang, and implementing non-blocking data structures in Haskell suitable for multi-core machines. Below is a (non-comprehensive) list of software that I have written.

- concurrent hash table: a thread-safe hash table that scales to multicores.
- data dispersal: an implementation of an (m,n)-threshold information dispersal scheme that is space-optimal.
- secret sharing: an implementation of a secret sharing scheme that provides information-theoretic security.
- tskiplist: a data structure with range-query support for software transactional memory.
- stm-io-hooks: An extension of Haskell's Software Transactional Memory (STM) monad with commit and retry IO hooks.
- Mathgenealogy: Visualize your (academic) genealogy! A program for extracting data from the Mathematics Genealogy project.
- I extended Haskell's Cabal, for using a "world" file to keep track of installed packages. (Now part of the main distribution.)

## Teaching

- Computer Networks, Fall 2020, 2019.
- Database Systems, Spring 2020.
- Distributed Computing, Spring 2019.
- Randomized Algorithms, Fall 2018: Intro slides. Part 1 on Concentration Bounds.
- Advanced Distributed Systems, Fall 2016, 2017.
- Computation with Data, Fall 2016.
- Internet and Web Technologies, Spring 2016.

## Misc

- Google scholar profile
- My profile on StackExchange