## Peter Robinson

I'm an Assistant Professor in the Computer Science Department of the City University of Hong Kong. My research focuses on designing new distributed and parallel algorithms, the distributed processing of big data, achieving fault-tolerance in communication networks against adversarial attacks, and developing robust protocols that work in highly dynamic environments such as peer-to-peer Blockchain networks and mobile ad-hoc networks.

My research has been supported by the General Research Fund (Hong Kong), the Natural Sciences and Engineering Research Council (Canada), IBM Research, and the London Mathematical Society.

## News

- New paper at SODA 2021
- General Chair of ACM PODC 2019
- On program committee of DISC 2021, ICDCS 2021, SIROCCO 2021, PODC 2020

## Tags (Show all)

Asynchrony Big Data Byzantine Failures Churn Communication Complexity Distributed Agreement Distributed Storage Dynamic Network Fault-Tolerance Gossip Communication Graph Algorithm Haskell Information Complexity Leader Election Machine Learning Mobile Ad-Hoc Network Natural Language Processing P2P Secure Computation in Networks Self-Healing Symmetry Breaking Wireless Networks## Publications

2019

- The Complexity of Leader Election in Diameter-two Networks.DOI

Soumyottam Chatterjee, Gopal Pandurangan, Peter Robinson. Distributed Computing (DC).

2018

- Leader Election in Well-Connected Graphs

Seth Gilbert, Peter Robinson, Suman Sourav. 37th ACM Symposium on Principles of Distributed Computing (PODC 2018).

AbstractIn this paper, we look at the problem of randomized leader election in synchronous distributed networks with a special focus on the message complexity. We provide an algorithm that solves the implicit version of leader election (where non-leader nodes need not be aware of the identity of the leader) in any general network with $O(\sqrt{n} \log^{7/2} n \cdot t_{mix})$ messages and in $O(t_{mix}\log^2 n)$ time, where $n$ is the number of nodes and $t_{mix}$ refers to the mixing time of a random walk in the network graph $G$. For several classes of well-connected networks (that have a large conductance or alternatively small mixing times e.g. expanders, hypercubes, etc), the above result implies extremely efficient (sublinear running time and messages) leader election algorithms. Correspondingly, we show that any substantial improvement is not possible over our algorithm, by presenting an almost matching lower bound for randomized leader election. We show that $\Omega(\sqrt{n}/\phi^{3/4})$ messages are needed for any leader election algorithm that succeeds with probability at least $1-o(1)$, where $\phi$ refers to the conductance of a graph. To the best of our knowledge, this is the first work that shows a dependence between the time and message complexity to solve leader election and the connectivity of the graph $G$, which is often characterized by the graph's conductance $\phi$. Apart from the $\Omega(m)$ bound in Kutten et al 2015 (where $m$ denotes the number of edges of the graph), this work also provides one of the first non-trivial lower bounds for leader election in general networks. - The Complexity of Leader Election: A Chasm at Diameter TwoDOI

Soumyottam Chatterjee, Gopal Pandurangan, Peter Robinson. 19th International Conference on Distributed Computing and Networking (ICDCN 2018).

Top Nomination for Best Paper Award.

AbstractLeader election is one of the fundamental problems in distributed computing. In its implicit version, only the leader must know who is the elected leader. This paper focuses on studying the message complexity of leader election in synchronous distributed networks, in particular, in networks of diameter two. Kutten et al. [JACM 2015] showed a fundamental lower bound of $\Omega(m)$ ($m$ is the number of edges in the network) on the message complexity of (implicit) leader election that applied also to Monte Carlo randomized algorithms with constant success probability; this lower bound applies for graphs that have {diameter at least three}. On the other hand, for complete graphs (i.e., diameter 1), Kutten et al. [TCS 2015] established a tight bound of $\tilde{\Theta}(\sqrt{n})$ on the message complexity of randomized leader election ($n$ is the number of nodes in the network). For graphs of diameter two, the complexity was not known. In this paper, we settle this complexity by showing a tight bound of $\tilde{\Theta}(n)$ on the message complexity of leader election in diameter-two networks. We first give a simple randomized Monte-Carlo leader election algorithm that with high probability (i.e., probability at least $1 - n^{-c}$, for some positive constant $c$) succeeds and uses $O(n\log^3{n})$ messages and runs in $O(1)$ rounds; this algorithm works without knowledge of $n$ (and hence needs no global knowledge). We then show that any algorithm (even Monte Carlo randomized algorithms with large enough constant success probability) needs $\Omega(n)$ messages (even when $n$ is known), regardless of the number of rounds. We also present an $O(n\log{n})$ messages deterministic algorithm that takes $O(\log{n})$ rounds (but needs knowledge of $n$); we show that this message complexity is tight for deterministic algorithms. Our results show that leader election can be solved in diameter-two graphs in (essentially) linear (in $n$) message complexity and thus the $\Omega(m)$ lower bound does not apply to diameter-two graphs.

2015

- On the Complexity of Universal Leader ElectionPDFDOI

Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, Amitabh Trehan. Journal of the ACM, vol. 62(1), 7:1-7:27 (JACM).

AbstractElecting a leader is a fundamental task in distributed computing. In its implicit version, only the leader must know who is the elected leader. This paper focuses on studying the message and time complexity of randomized implicit leader election in synchronous distributed networks. Surprisingly, the most ''obvious'' complexity bounds have not been proven for randomized algorithms. The ``obvious'' lower bounds of $\Omega(m)$ messages ($m$ is the number of edges in the network) and $\Omega(D)$ time ($D$ is the network diameter) are non-trivial to show for randomized (Monte Carlo) algorithms. (Recent results that show that even $\Omega(n)$ ($n$ is the number of nodes in the network) is not a lower bound on the messages in complete networks, make the above bounds somewhat less obvious). To the best of our knowledge, these basic lower bounds have not been established even for deterministic algorithms (except for the limited case of comparison algorithms, where it was also required that some nodes may not wake up spontaneously, and that $D$ and $n$ were not known). We establish these fundamental lower bounds in this paper for the general case, even for randomized Monte Carlo algorithms. Our lower bounds are universal in the sense that they hold for all universal algorithms (such algorithms should work for all graphs), apply to every $D$, $m$, and $n$, and hold even if $D$, $m$, and $n$ are known, all the nodes wake up simultaneously, and the algorithms can make any use of node's identities. To show that these bounds are tight, we present an $O(m)$ messages algorithm. An $O(D)$ time algorithm is known. An interesting fundamental problem is whether both upper bounds (messages and time) can be reached simultaneously in the randomized setting for all graphs. (The answer is known to be negative in the deterministic setting). We answer this problem partially by presenting a randomized algorithm that matches both complexities in some cases. This already separates (for some cases) randomized algorithms from deterministic ones. As first steps towards the general case, we present several universal leader election algorithms with bounds that trade-off messages versus time. We view our results as a step towards understanding the complexity of universal leader election in distributed networks.

2014

- Sublinear Bounds for Randomized Leader ElectionPDFDOI

Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, Amitabh Trehan. Special Issue of Theoretical Computer Science, Elsevier. (TCS).

AbstractThis paper concerns randomized leader election in synchronous distributed networks. A distributed leader election algorithm is presented for complete $n$-node networks that runs in $O(1)$ rounds and (with high probability) uses only $O(\sqrt{n}\log^{3/2} n)$ messages to elect a unique leader (with high probability). When considering the ''explicit'' variant of leader election where eventually every node knows the identity of the leader, our algorithm yields the asymptotically optimal bounds of $O(1)$ rounds and $O(n)$ messages. This algorithm is then extended to one solving leader election on any connected non-bipartite $n$-node graph $G$ in $O(\tau(G))$ time and $O(\tau(G)\sqrt{n}\log^{3/2} n)$ messages, where $\tau(G)$ is the mixing time of a random walk on $G$. The above result implies highly efficient (sublinear running time and messages) leader election algorithms for networks with small mixing times, such as expanders and hypercubes. In contrast, previous leader election algorithms had at least linear message complexity even in complete graphs. Moreover, super-linear message lower bounds are known for time-efficient deterministic leader election algorithms. Finally, we present an almost matching lower bound for randomized leader election, showing that $\Omega(\sqrt{n})$ messages are needed for any leader election algorithm that succeeds with probability at least $1/e + \epsilon$, for any small constant $\epsilon > 0$. We view our results as a step towards understanding the randomized complexity of leader election in distributed networks.

2013

- Sublinear Bounds for Randomized Leader ElectionPDFDOI

Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, Amitabh Trehan. 14th International Conference on Distributed Computing and Networking (ICDCN 2013). Best Paper Award.

AbstractThis paper concerns randomized leader election in synchronous distributed networks. A distributed leader election algorithm is presented for complete n-node networks that runs in $O(1)$ rounds and (with high probability) takes only $O(\sqrt{n}\log^{3/2}n)$ messages to elect a unique leader (with high probability). This algorithm is then extended to solve leader election on any connected non-bipartite n-node graph $G$ in $O(\tau(G))$ time and $O(\tau(G)\sqrt{n}\log^{3/2}n)$ messages, where $\tau(G)$ is the mixing time of a random walk on $G$. The above result implies highly efficient (sublinear running time and messages) leader election algorithms for networks with small mixing times, such as expanders and hypercubes. In contrast, previous leader election algorithms had at least linear message complexity even in complete graphs. Moreover, super-linear message lower bounds are known for time-efficient deterministic leader election algorithms. Finally, an almost-tight lower bound is presented for randomized leader election, showing that $\Omega(\sqrt{n})$ messages are needed for any $O(1)$ time leader election algorithm which succeeds with high probability. It is also shown that $\Omega(n^{1/3})$ messages are needed by any leader election algorithm that succeeds with high probability, regardless of the number of the rounds. We view our results as a step towards understanding the randomized complexity of leader election in distributed networks. - On the Complexity of Universal Leader ElectionPDFDOI

Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, Amitabh Trehan. 32nd ACM Symposium on Principles of Distributed Computing (PODC 2013).

AbstractElecting a leader is a fundamental task in distributed computing. In its implicit version, only the leader must know who is the elected leader. This paper focuses on studying the message and time complexity of randomized implicit leader election in synchronous distributed networks. Surprisingly, the most ''obvious'' complexity bounds have not been proven for randomized algorithms. The ``obvious'' lower bounds of $\Omega(m)$ messages ($m$ is the number of edges in the network) and $\Omega(D)$ time ($D$ is the network diameter) are non-trivial to show for randomized (Monte Carlo) algorithms. (Recent results that show that even $\Omega(n)$ ($n$ is the number of nodes in the network) is not a lower bound on the messages in complete networks, make the above bounds somewhat less obvious). To the best of our knowledge, these basic lower bounds have not been established even for deterministic algorithms (except for the limited case of comparison algorithms, where it was also required that some nodes may not wake up spontaneously, and that $D$ and $n$ were not known). We establish these fundamental lower bounds in this paper for the general case, even for randomized Monte Carlo algorithms. Our lower bounds are universal in the sense that they hold for all universal algorithms (such algorithms should work for all graphs), apply to every $D$, $m$, and $n$, and hold even if $D$, $m$, and $n$ are known, all the nodes wake up simultaneously, and the algorithms can make any use of node's identities. To show that these bounds are tight, we present an $O(m)$ messages algorithm. An $O(D)$ time algorithm is known. An interesting fundamental problem is whether both upper bounds (messages and time) can be reached simultaneously in the randomized setting for all graphs. (The answer is known to be negative in the deterministic setting). We answer this problem partially by presenting a randomized algorithm that matches both complexities in some cases. This already separates (for some cases) randomized algorithms from deterministic ones. As first steps towards the general case, we present several universal leader election algorithms with bounds that trade-off messages versus time. We view our results as a step towards understanding the complexity of universal leader election in distributed networks. - Robust Leader Election in a Fast-Changing World

John Augustine, Tejas Kulkarni, Paresh Nakhe, Peter Robinson. 9th International Workshop on Foundations of Mobile Computing (FOMC 2013).

AbstractWe consider the problem of electing a leader among nodes in a highly dynamic network where the adversary has unbounded capacity to insert and remove nodes (including the leader) from the network and change connectivity at will. We present a randomized algorithm that (re)elects a leader in $O(D\log n)$ rounds with high probability, where $D$ is a bound on the dynamic diameter of the network and $n$ is the maximum number of nodes in the network at any point in time. We assume a model of broadcast-based communication where a node can send only $1$ message of $O(\log n)$ bits per round and is not aware of the receivers in advance. Thus our results also apply to mobile wireless ad-hoc networks, improving over the optimal (for deterministic algorithms) $O(Dn)$ solution presented at FOMC 2011. We show that our algorithm is optimal by proving that any randomized algorithm takes at least $\Omega(D\log n)$ rounds to elect a leader with high probability, which shows that our algorithm yields the best possible (up to constants) termination time.

2011

- Optimal Regional Consecutive Leader Election in Mobile Ad-Hoc NetworksPDFDOI

Hyun Chul Chung, Peter Robinson, Jennifer L. Welch. 7th ACM SIGACT/SIGMOBILE International Workshop on Foundations of Mobile Computing (part of FCRC 2011).

AbstractThe regional consecutive leader election (RCLE) problem requires mobile nodes to elect a leader within bounded time upon entering a specific region. We prove that any algorithm requires $\Omega(Dn)$ rounds for leader election, where D is the diameter of the network and $n$ is the total number of nodes. We then present a fault-tolerant distributed algorithm that solves the RCLE problem and works even in settings where nodes do not have access to synchronized clocks. Since nodes set their leader variable within $O(Dn)$ rounds, our algorithm is asymptotically optimal with respect to time complexity. Due to its low message bit complexity, we believe that our algorithm is of practical interest for mobile wireless ad-hoc networks. Finally, we present a novel and intuitive constraint on mobility that guarantees a bounded communication diameter among nodes within the region of interest.

2010

- Regional Consecutive Leader Election in Mobile Ad-Hoc Networks

Hyun Chul Chung, Peter Robinson, Jennifer L. Welch. 6th ACM SIGACT/SIGMOBILE Workshop on Foundations of Mobile Computing (DIALM-POMC 2010).

## Code

I'm interested in parallel and distributed programming and related technologies such as software transactional memory and the actor-model. Recently, I have been working on implementing a simulation environment for distributed algorithms in Elixir/Erlang, and implementing non-blocking data structures in Haskell suitable for multi-core machines. Below is a (non-comprehensive) list of software that I have written.

- concurrent hash table: a thread-safe hash table that scales to multicores.
- data dispersal: an implementation of an (m,n)-threshold information dispersal scheme that is space-optimal.
- secret sharing: an implementation of a secret sharing scheme that provides information-theoretic security.
- tskiplist: a data structure with range-query support for software transactional memory.
- stm-io-hooks: An extension of Haskell's Software Transactional Memory (STM) monad with commit and retry IO hooks.
- Mathgenealogy: Visualize your (academic) genealogy! A program for extracting data from the Mathematics Genealogy project.
- I extended Haskell's Cabal, for using a "world" file to keep track of installed packages. (Now part of the main distribution.)

## Teaching

- Computer Networks, Fall 2020, 2019.
- Database Systems, Spring 2020.
- Distributed Computing, Spring 2019.
- Randomized Algorithms, Fall 2018: Intro slides. Part 1 on Concentration Bounds.
- Advanced Distributed Systems, Fall 2016, 2017.
- Computation with Data, Fall 2016.
- Internet and Web Technologies, Spring 2016.

## Misc

- Google scholar profile
- My profile on StackExchange